Inventory Forecasting Analysis using The Weighted Moving Average Method in Go Public Trading Companies

English

Authors

  • Erycha Puspitasari Politeknik Negeri Malang
  • Nurafni Eltivia Politeknik Negeri Malang
  • Nur Indah Riwajanti Politeknik Negeri Malang

DOI:

https://doi.org/10.54408/jabter.v2i3.160

Keywords:

Inventory, Forecasting, Weighted Moving Average Method

Abstract

This research aims to analyze inventory forecasting using the weighted moving average method and then compare the trading companies' patterns. The research method used is quantitative descriptive with secondary data of inventory in the period 2018-2022 which provide quarterly. This research uses the weighted moving average method to calculate forecasting of inventory by Microsoft Excel data analysis techniques. This research shows the highest inventory forecasting on PT Sumber Alfaria Trijaya Tbk (AMRT) occurs in the first quarter of 2023 with the amount of 10.537.541 and the lowest forecasting occurs in the second quarter in 2023 with the amount of 10.431.677. The highest inventory forecasting on PT Erajaya Swasembada Tbk (ERAA) occurs in the second quarter of 2023 with the amount of 6.443.525 and the lowest forecasting in the fourth quarter of 2023 with the amount of 6.418.659. The highest inventory forecasting on PT United Tractors Tbk (UNTR) occurs in the third quarter of 2023 with the amount of 12.239.422 and the lowest forecasting in the first quarter of 2023 with the amount of 12.050.681. Based on the study's results, the tracking signal value at AMRT was 2,17, ERAA was 0.01, and UNTR was -0.08. The three companies' results prove that the weighted moving average can be used to determine inventory forecasting for the next period because the tracking signal value is still within the control limits of ±4.

Downloads

Download data is not yet available.

References

Babai, M. Z., Ali, M. M., Boylan, J. E., & Syntetos, A. A. (2013). Forecasting and Inventory Performance in A Two-Stage Supply Chain with ARIMA (0, 1, 1) Demand: Theory and Empirical Analysis. International Journal of Production Economics, 143(2), 463-471.

Hayuningtyas, R. Y. (2017). Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing. Jurnal PILAR Nusa Mandiri, 13(2), 217-222. Retrieved from https://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/240

Heizer, & Render. (2015). Manajemen Operasi: Manajemen Keberlansungan dan Rantai Pasokan. New Jersey: Pearson.

Herlambang, L., & Sugianto, W. (2021). Analisis Peramalan Penjualan Sepeda dan Motor Listrik. Computer and Science Industrial Engineering (COMASIE), 4(1), 130-138. Retrieved from https://ejournal.upbatam.ac.id/index.php/comasiejournal/article/view/2994

Latif, M., & Herdiansyah, R. (2022). Peramalan Persediaan Barang Menggunakan Metode Wighted Moving Average dan Metode Double Exponential Smoothing. Journal of Information System Research (JOSH), 3(2), 137-142. DOI: https://doi.org/10.47065/josh.v3i2.1232

Nugroho, A. S. (2017). Analisis dan Perancangan Sistem Informasi.

Palembastian Bayuarta, M. G. (2021). Peramalan Kebutuhan Pemakaian Air Bersih Di PDAM Kota Malang Menggunakan Metode Least Square (Doctoral dissertation, Teknologi Informasi).

Ramdhany, T., & Kurnia, D. (2016). Perencanaan Sistem Informasi Persediaan Barang Dagang di PT Dimarco Mitra Utama Cabang Bandung. Jurnal Rekayasa Sistem dan Industri (JRSI), 3(1), 19-26. DOI: https://doi.org/10.25124/jrsi.v3i01.37

Setiyanto, R., Nurmaesah, N., & Rahayu, N. S. (2019). Perancangan Sistem Informasi Persediaan Barang Studi Kasus di Vahncollections. Jurnal Sisfotek Global, 9(1).

Solikin, I., & Hardini, S. (2019). Aplikasi Forecasting Stok Barang Menggunakan Metode Weighted Moving Average (WMA) pada Metrojaya Komputer. Jurnal Informatika, 4(2). DOI: http://dx.doi.org/10.30591/jpit.v4i2.1373

Swasono, M., & Prastowo, A. T. (2021). Analisis dan Perancangan Sistem Informasi Pengendalian Persediaan Barang. Jurnal Informatika dan Rekayasa Perangkat Lunak, 2(1), 134-143. DOI: https://doi.org/10.33365/jatika.v2i1.734

Downloads

Published

2023-02-28

How to Cite

Puspitasari, E., Eltivia, N., & Riwajanti, N. I. (2023). Inventory Forecasting Analysis using The Weighted Moving Average Method in Go Public Trading Companies: English. Journal of Applied Business, Taxation and Economics Research, 2(3), 298–310. https://doi.org/10.54408/jabter.v2i3.160

Most read articles by the same author(s)