Stock Price Forecasting with the Weight Moving Average Method in Technology Sector Companies on the Indonesia Stock Exchange (IDX)

Authors

  • Syefira Ramadhani Politeknik Negeri Malang
  • Nurafni Eltivia Politeknik Negeri Malang
  • Nur Indah Riwajanti Politeknik Negeri Malang

DOI:

https://doi.org/10.54408/jabter.v3i1.185

Keywords:

Forecasting, Stock Price, Weight Moving Average, Technology Companies, Indonesia Stock Exchange (IDX)

Abstract

This study aims to forecast the share price of the technology sector listed on the Indonesia Stock Exchange (IDX). We sampled 26 of the 34 technology companies listed on the IDX in 2022.  The data used is secondary data from the official website of the Indonesia Stock Exchange, namely www.idx.co.id and finance.yahoo.co.id for 9 months, namely the period January – September 2022. The results showed that the calculation of the Weight Moving Average (WMA) for the average value of the Absolute value of forecast error 16,374.70, and the value of the Absolute value of the Percentage of Error is 531.10%. The forecasting assessment method uses Mean Absolute Percent Error (MAPE). The resulting MAPE value is 3.02%. The highest MAPE score was Kioson Komersial Indonesia Tbk (KIOS) with a score of 5.99% while the lowest score was Sat Nusapersada Tbk (PTSN) with a score of 1.23%. From the results of MAPE for technology sector companies, it can be concluded that using the WMA Method and MAPE error valuation falls into the category of excellent forecasting ability in forecasting stock prices.

Downloads

Download data is not yet available.

References

Alam Akbar Halimawan and Subiakto Sukarno. (2013). Stock Price Forecasting Accuracy Analysis Using Mean Absolute Deviation (MAD) And Mean Absolute Percentage Error (MAPE) On Smoothing Moving Average And Exponential Moving Average Indikator (Empirical Study 10 LQ45 STOCK With Largest Capitalization From PE. X(X), 1613–1626.

Andreinna, S., Ayu P, M., Ula, U., Rizqi, S., Nissa, F., & Cahyo, H. (2020). PENGARUH COVID-19 TERHADAP HARGA SAHAM DI INDONESIA TAHUN 2019-2020 Studi Kasus di Indonesia. https://doi.org/https://doi.org/10.34123/semnasoffstat.v2020i1.427

Bresman, Fajrizal, & Guntoro. (2020). Aplikasi Forecasting Stok Barang Menggunakan Metode Single Exponential Smoothing Pada a&W Restaurant Mall Ciputra Seraya Pekanbaru. Prosiding-Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), 1(1), 323–330. https://journal.unilak.ac.id/index.php/Semaster/article/view/6147

Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96. https://doi.org/10.1016/j.eswa.2005.11.021

Christy, J., Hintarsyah, A. P., & Spits Warnars, H. L. H. (2018). Forecasting Sebagai Decision Support Systems Aplikasi dan Penerapannya Untuk Mendukung Proses Pengambilan Keputusan. Jurnal Sistem Komputer, 8(1), 19–27.

Dalmarco, G., Ramalho, F. R., Barros, A. C., & Soares, A. L. (2019). Providing industry 4.0 technologies: The case of a production technology cluster. Journal of High Technology Management Research, 30(2), 100355. https://doi.org/10.1016/j.hitech.2019.100355

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210(September 2018), 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004

Hendriani, T., Yamin, M., & Dewi, A. P. (2017). Sistem Peramalan Persediaan Obat Dengan Metode Weight Moving Average Dan Reorder Point (Studi Kasus: Puskesmas Soropia). SemanTIK, 2(2), 207–214. http://ojs.uho.ac.id/index.php/semantik/article/view/1811/0

Hu, Z., Zhao, Y., & Khushi, M. (2021). A Survey of Forex and Stock Price Prediction Using Deep Learning. 1–30.

IDX. (2022). IDX INDEX FACT SHEET IDX TECHNO. American Journal of Orthodontics and Dentofacial Orthopedics, 162(4), 584.e1-584.e2. (Accessed December 5, 2022).

IDX. (2021). Outperforming Expectations amidst Uncertainties. Annual Report of IDX 2021. https://www.idx.co.id/media/11311/2021-completed.pdf. (Accessed December 5, 2022).

Ishak, Aulia. (2010). Manajemen Operasi. Yogyakarta: Graha Ilmu

Kementerian Komunikasi dan Informatika Republik Indonesia. (2019). Perkembangan Ekonomi Digital di Indonesia Strategi dan Sektor Potensial. Badan Penelitian Dan Pengembangan SDM Puslitbang Aptika Dan IKP, 3(2), 1–75.

Khanady, L., Harga, P., Dengan, S., & Nababan, D. (2011). Prediksi Harga Saham Dengan Menggunakan JST (Jaringan Syaraf Tiruan). In Jalan Imam Bonjol (Issue 6).

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

Lu, W. (2020). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications, 0123456789. https://doi.org/10.1007/s00521-020-05532-z

Malichová, E., & Ďurišová, M. (2015). Evaluation of Financial Performance of Enterprises in the IT Sector. Procedia Economics and Finance, 34(15), 238–243. https://doi.org/10.1016/s2212-5671(15)01625-1

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction Time Series Analysis and Forecasting. 671.

Mustaqim, M., Putrihadiningirum, D. C., & Wahyuningtiyas, N. (2022). Analisis Teknikal Saham Kalbe Farma Dengan Menggunakan Moving Average Convergence Divergence Dan Stochastic Ocilator Selama Pandemi Covid-19 Periode 2020-2021. Journal of Islamic Accounting and Finance, II(1), 98–117. www.idx.co.id

Nasution, A. (2019). Metode Weighted Moving Average Dalam M-Forecasting. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 119–124. https://doi.org/10.33330/jurteksi.v5i2.355

Nurlifa, A., & Kusumadewi, S. (2017). Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky. INOVTEK Polbeng - Seri Informatika, 2(1), 18. https://doi.org/10.35314/isi.v2i1.112

Permata, C. P., & Ghoni, M. A. (2019). Peranan Pasar Modal Dalam Perekonomian Negara Indonesia. Jurnal Akun Stie, 5(2), 50–61.

Qolbi, N (2021) “IHSG Naik 10,08% Sepanjang 2021” https://investasi.kontan.co.id/news/ihsg-naik-1008-sepanjang-2021. (Accessed December 5, 2022).

Rahardika, H., Permata, A., Anggianni, R. H., & Mulyantini, S. (2022). Jurnal Ilmiah Manajemen Dan Kewirausahaan Review Analisis Determinan Harga Saham Perusahaan Sektor Teknologi. Jimak, 1(1).

Rahmentio, Y., Rahman, A., Putra, D. G., & Aprayuda, R. (2022). Apakah Efek Pandemi Covid-19 Meningkatkan Return Saham Perusahaan Teknologi ? Jurnal Ecogen, 5(2), 194. https://doi.org/10.24036/jmpe.v5i2.13107

Ramadania, R. (2018). Peramalan Harga Beras Bulanan di Tingkat Penggilingan dengan Metode Weighted Moving Average. Bimaster, 7(4), 329–334. http://jurnal.untan.ac.id/index.php/jbmstr/article/view/28402/75676578415

Sugiyono. (2012). Metode Penelitian Kuantitatif kualitatif dan R&D. Bandung: Alfabeta

Sutrisno. (2012) Manajemen Keuangan Teori, Konsep dan Aplikasi. Yogyakarta: EKONISIA

Tandelilin, E. (2017) Pasar Modal: Manajemen Portofolio dan Investasi. Yogyakarta: PT Kanisius

Simuru, J. K., Saerang, I. S., & Maramis, J. B. (2021). Pengujian akurasi metode moving average dalam memprediksi harga saham masa depan pada bank bumn yang terdaftar di bursa efek Indonesia. Testing The Accuracy Of The Moving Average Method In Predicting Future Share Prices In Bumn Banks Listed On The Indonesia. 1664 Jurnal EMBA, 9(3), 1664–1673. https://doi.org/DOI: https://doi.org/10.35794/emba.v9i3.35948

Sundari, S. S., Susanto, & Revianti, W. (2015). Sistem Peramalan Persediaan Barang Dengan Weight Moving Average Di Toko The Kids 24. Konferensi Nasional Sistem Dan Informatika, 598–603.

Yahoo! Finance (2022). PT Metrodata Electronics Tbk. Historical Data PT Metrodata Electronics Tbk (MTDL.JK) https://finance.yahoo.com/quote/MTDL.JK/history?p=MTDL.JK. (Accessed December 8, 2022).

Zhukov, P. E. (2019). The Impact of Electronic Commerce on Economic Development-Assessment of Contribution to the Chinese Economic Growth from Alibaba Group. 2nd International Workshop on Advances in Social Sciences, Iwass, 196–200. https://doi.org/10.25236/iwass.2019.028

Downloads

Published

2023-10-10

How to Cite

Ramadhani, S., Eltivia , N. ., & Indah Riwajanti , N. . (2023). Stock Price Forecasting with the Weight Moving Average Method in Technology Sector Companies on the Indonesia Stock Exchange (IDX). Journal of Applied Business, Taxation and Economics Research, 3(1), 1–13. https://doi.org/10.54408/jabter.v3i1.185

Most read articles by the same author(s)